pacman::p_load(scatterPlotMatrix, parallelPlot, cluster, factoextra, tidyverse)In Class Exercise 9
Import Data
wine <- read_csv("data/wine_quality.csv")Quick overview of the type of wine in data set.
ggplot(data = wine, aes(x= type)) + geom_bar() + labs(
title = "Breakdown of Wine by Type",
x = "Type of Wine",
y = "Frequency of Wine"
)
Only interested in white wine, hence filter to white wine.
- Drop column 12: Quality of Wine to make the data more clean for clustering
- Drop column 13 on type as already filtered down to white wine, all will be “white:
whitewine <- wine %>%
filter(type == "white") %>%
select(c(1:11))Scatter Plot Matrix (Interactive)
Plotting the scatter plot matrix.
As the plot is a widget itself, the width and height of the display is defined within the variable (500 pixel width and 500 pixel height).
distribType = 1: Density Plot, 2 = Histogram
corrPlotCS = Setting color for the scheme. (e.g “YlOrRd”)
# returning density plot
scatterPlotMatrix(whitewine, corrPlotType = "Text",
distribType = 1,
width = 500,
height = 500)# returning histogram
scatterPlotMatrix(whitewine, corrPlotType = "Text",
distribType = 2,
width = 500,
height = 500)Exposing control for the widget with controlWidgets = TRUE
scatterPlotMatrix(whitewine, corrPlotType = "Text",
distribType = 2,
width = 500,
height = 500,
controlWidgets = TRUE)Clustering
Determining optimal number of clusters
#set.seed(1234)
#gap_stat <- clusGap
#fviz_gap_stat(gap_stat)Deriving the 4 clusters
- set.seed defined to ensure that it starts from the same position to return similar clusters per iteration
set.seed(123)
kmeans4 <- kmeans(whitewine, 4, nstart = 25)
print(kmeans4)K-means clustering with 4 clusters of sizes 757, 978, 1444, 1719
Cluster means:
fixed acidity volatile acidity citric acid residual sugar chlorides
1 6.981506 0.2965786 0.3563540 9.705878 0.05227081
2 6.805112 0.2759356 0.3168814 3.607822 0.04012781
3 6.908172 0.2776939 0.3455402 7.780852 0.04919668
4 6.782403 0.2719372 0.3247469 5.348342 0.04324549
free sulfur dioxide total sulfur dioxide density pH sulphates
1 52.83421 206.8164 0.9965522 3.176975 0.5179392
2 20.52761 83.1411 0.9919192 3.175256 0.4707566
3 42.31129 160.3061 0.9951215 3.193996 0.4940651
4 30.11635 121.1963 0.9931958 3.195829 0.4847935
alcohol
1 9.611471
2 11.233930
3 10.120392
4 10.833256
Clustering vector:
[1] 3 4 2 1 1 2 4 3 4 4 2 4 2 3 3 4 2 2 3 4 2 2 4 3 4 1 3 4 4 4 4 2 2 4 3 4 3
[38] 4 3 3 3 3 3 3 3 3 1 1 3 3 3 4 2 4 4 1 1 3 2 4 4 3 3 2 4 4 4 3 2 4 1 1 1 2
[75] 2 4 2 2 4 4 4 3 3 1 3 3 3 1 3 3 3 1 4 4 3 1 3 2 2 3 1 3 3 3 1 4 3 3 3 1 3
[112] 1 1 3 3 2 4 2 1 1 2 4 4 4 3 3 4 1 3 3 2 1 1 1 1 3 4 3 2 2 2 3 4 2 2 4 3 2
[149] 2 4 3 3 4 2 2 1 1 4 4 4 4 3 2 1 1 3 1 2 3 4 4 2 2 4 3 3 2 3 4 3 3 1 3 1 1
[186] 1 3 4 4 1 1 3 4 4 1 1 1 1 1 1 1 1 1 4 4 3 4 4 2 3 2 4 4 4 4 3 3 3 3 3 3 3
[223] 4 3 4 3 1 1 1 3 4 1 1 1 1 1 1 1 4 3 1 2 2 1 3 1 4 2 2 4 1 1 3 4 3 3 2 2 4
[260] 2 4 3 2 1 3 3 3 3 3 3 3 3 3 4 1 3 3 2 2 4 4 4 1 1 1 3 1 1 1 1 1 3 1 3 3 3
[297] 3 1 3 4 2 2 2 3 3 3 3 3 4 3 2 3 3 3 3 4 4 4 4 2 2 4 4 4 1 1 1 3 1 2 4 4 2
[334] 4 2 2 4 3 4 3 3 4 4 3 3 4 2 3 4 3 3 4 4 4 1 1 1 3 3 3 3 2 4 1 2 4 3 3 3 2
[371] 3 3 1 3 2 2 4 2 3 4 2 3 3 3 4 2 4 1 4 1 1 2 4 2 3 3 2 4 3 2 4 3 4 1 3 3 4
[408] 4 4 2 3 3 2 2 3 3 2 1 2 4 4 1 1 1 3 1 1 1 2 1 1 2 1 3 4 2 1 1 1 4 2 4 4 1
[445] 3 2 3 4 4 4 3 4 3 4 4 4 2 4 1 1 4 3 3 2 3 4 3 2 3 1 3 1 2 4 4 1 4 4 3 3 3
[482] 4 4 3 1 4 4 2 3 3 2 2 3 3 4 3 1 3 3 1 1 3 1 1 3 3 4 3 3 3 3 3 4 2 4 3 3 3
[519] 2 2 4 4 2 2 2 4 2 4 4 4 4 3 3 3 3 3 3 3 2 1 3 1 3 3 3 3 3 2 4 1 3 2 4 3 4
[556] 2 3 4 3 3 3 4 3 4 3 2 2 3 3 3 1 4 3 3 4 1 1 3 4 4 1 4 3 2 4 2 3 4 4 4 4 4
[593] 3 4 4 4 3 4 4 2 3 4 4 4 4 4 3 3 3 2 4 2 4 4 4 4 2 1 1 4 1 3 4 2 4 4 3 1 1
[630] 2 3 3 4 1 3 4 4 3 1 1 4 1 1 3 3 3 3 3 1 1 1 1 1 4 3 4 2 4 1 1 2 4 3 2 3 4
[667] 1 3 3 1 1 2 3 4 1 1 1 2 2 2 3 3 3 3 3 1 4 1 1 4 4 1 1 3 1 1 2 1 1 1 1 4 2
[704] 4 4 2 1 3 4 2 3 4 4 1 1 3 1 3 3 4 3 3 4 2 4 4 4 2 3 3 4 1 2 3 1 4 3 1 3 4
[741] 2 2 4 3 3 4 1 3 3 3 3 3 3 1 4 4 3 3 3 4 3 3 1 4 3 4 1 2 4 4 4 3 3 3 4 4 2
[778] 1 3 3 2 1 3 3 1 4 4 4 4 4 4 2 3 2 3 3 1 3 4 2 3 1 1 3 4 3 1 1 1 1 1 4 3 3
[815] 1 4 2 4 4 4 2 1 4 4 2 3 3 4 2 2 4 3 4 2 4 4 3 3 3 4 4 3 3 4 4 4 3 2 3 4 4
[852] 3 4 3 4 4 3 3 3 3 4 1 3 4 3 4 4 3 3 2 3 3 4 2 2 4 4 4 4 4 4 4 4 4 1 4 3 2
[889] 3 2 3 4 4 4 4 2 1 2 2 1 3 4 1 1 3 2 2 4 3 1 4 4 4 2 2 2 4 4 4 4 3 3 3 1 3
[926] 2 2 3 3 4 2 1 1 1 1 1 2 4 1 1 1 1 2 4 4 4 1 3 2 2 4 4 2 4 4 4 4 2 2 3 3 4
[963] 3 4 3 2 1 3 2 2 2 4 3 2 4 4 4 1 3 2 2 3 2 2 3 4 3 3 3 4 3 2 1 2 3 3 2 3 3
[1000] 3 2 1 1 4 3 2 3 2 1 3 4 3 2 1 3 4 4 4 3 1 4 4 1 3 3 4 3 2 4 1 3 1 1 1 1 3
[1037] 2 2 4 2 4 2 4 1 2 2 4 2 2 4 3 4 2 4 2 4 4 1 4 3 4 1 1 1 3 4 3 4 2 3 3 4 4
[1074] 1 3 4 3 4 1 1 4 3 3 1 4 3 4 4 1 4 1 3 3 4 1 2 3 4 4 4 3 4 3 4 3 1 4 2 2 3
[1111] 2 2 3 2 2 2 2 1 2 4 4 4 2 4 4 3 3 2 2 4 3 4 3 4 4 3 3 3 4 2 2 3 4 4 4 1 3
[1148] 3 4 1 1 1 2 2 3 3 4 4 1 4 3 4 3 1 2 4 2 4 2 3 4 4 4 4 1 3 1 3 3 4 4 4 4 4
[1185] 4 1 3 4 3 2 4 4 4 4 1 3 4 4 4 2 2 2 1 2 2 1 3 1 4 4 2 3 3 2 2 3 2 1 4 2 1
[1222] 4 4 3 4 2 4 4 4 2 1 4 2 4 3 1 2 4 4 3 3 3 3 4 4 1 3 2 2 1 3 3 3 3 3 4 3 1
[1259] 1 1 1 3 3 1 2 3 4 3 4 1 3 4 3 4 1 4 3 4 4 3 4 3 3 3 3 4 3 4 4 2 2 1 2 2 2
[1296] 1 4 4 3 3 3 3 1 3 1 4 4 4 4 2 3 4 3 3 3 3 1 3 2 1 4 4 3 3 3 4 3 3 2 4 4 4
[1333] 1 3 4 1 3 1 1 4 4 3 4 3 3 4 3 3 3 2 4 4 1 1 3 3 1 3 4 4 3 1 4 2 3 4 2 4 1
[1370] 1 4 3 3 3 4 4 4 4 4 4 3 2 2 2 4 4 4 2 4 1 4 2 2 2 4 2 4 1 1 2 1 1 4 4 2 4
[1407] 2 2 1 4 2 2 3 4 4 2 4 1 4 4 4 2 4 1 4 4 4 3 2 2 4 2 2 2 3 2 1 2 1 1 3 4 4
[1444] 4 3 4 2 3 3 3 3 4 3 3 1 3 2 4 3 4 4 3 3 4 3 3 3 2 2 4 3 3 2 4 2 3 3 2 3 4
[1481] 3 4 1 2 4 4 2 3 1 1 4 2 1 3 1 1 2 4 2 3 4 3 4 4 4 4 1 3 3 4 4 4 4 3 4 4 3
[1518] 3 2 3 3 4 3 3 3 3 3 1 3 3 3 3 1 4 3 4 2 3 4 4 3 2 4 2 2 3 3 3 4 4 3 4 3 3
[1555] 3 3 3 3 4 2 3 4 4 3 4 4 3 4 1 3 3 1 3 4 4 1 2 4 3 1 4 2 4 3 1 3 3 1 3 4 3
[1592] 3 4 2 4 1 4 1 4 2 4 1 2 2 4 4 4 4 1 1 4 2 2 4 4 3 1 4 1 4 2 4 3 4 4 3 1 4
[1629] 4 2 4 4 4 4 1 4 3 3 1 4 3 3 4 3 4 3 3 2 2 3 4 1 4 3 3 4 2 3 1 1 1 1 4 3 3
[1666] 4 2 4 2 4 3 2 3 3 1 1 2 3 3 4 1 1 1 1 1 1 3 1 1 4 3 1 1 1 3 4 1 1 1 3 4 1
[1703] 4 3 3 4 3 3 3 3 2 4 3 4 4 3 4 4 3 2 3 1 3 3 4 3 2 1 4 4 4 1 4 4 1 3 2 1 2
[1740] 2 3 3 3 3 4 1 2 3 2 4 3 3 1 3 2 3 1 1 2 1 1 4 2 4 1 1 1 3 3 4 3 3 3 3 2 4
[1777] 3 3 3 3 3 1 3 2 4 3 4 3 4 1 3 4 3 1 4 3 4 4 3 3 1 2 3 3 1 4 4 1 4 1 3 4 2
[1814] 4 2 3 4 4 2 4 3 4 2 1 3 2 3 1 1 3 3 3 3 3 3 1 4 4 1 4 3 4 1 4 2 3 3 3 1 1
[1851] 3 2 4 4 3 1 3 3 3 1 3 1 4 1 4 4 1 4 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 1 4 2 4
[1888] 3 1 4 1 1 3 3 3 1 3 3 2 4 3 4 3 4 1 3 4 3 2 4 3 2 4 3 4 2 3 2 3 1 3 4 4 2
[1925] 2 2 2 3 1 3 1 1 2 3 2 3 1 3 2 3 1 3 1 1 1 3 3 1 4 3 1 3 4 3 1 3 2 2 1 2 2
[1962] 4 2 1 3 3 4 1 3 3 4 3 4 4 4 1 1 3 4 1 1 1 1 1 1 3 3 3 1 4 4 1 2 3 3 3 3 3
[1999] 3 1 3 3 3 3 3 3 3 2 3 2 2 3 3 4 2 2 4 2 4 4 3 3 1 3 1 3 2 3 3 1 4 3 2 1 4
[2036] 2 3 3 4 2 1 4 4 4 4 2 4 3 3 3 4 3 3 2 2 3 3 3 1 3 1 2 4 4 3 4 4 3 4 4 3 4
[2073] 3 1 3 4 4 1 4 4 4 2 4 4 3 3 2 3 4 3 3 3 2 4 4 3 4 3 3 3 3 2 1 4 3 4 1 3 3
[2110] 1 3 3 3 2 1 3 2 4 4 4 3 4 3 3 4 3 3 1 3 4 4 3 3 3 4 1 4 1 2 2 4 4 3 2 3 3
[2147] 4 4 2 2 4 4 2 2 1 3 2 2 4 2 4 2 4 2 4 3 3 1 1 1 1 1 4 3 1 1 4 4 3 4 3 4 3
[2184] 3 4 2 2 4 2 4 4 3 3 4 2 4 2 2 1 1 3 3 1 3 3 3 4 4 4 4 3 4 4 4 4 3 2 4 3 4
[2221] 4 3 3 3 3 3 3 3 4 3 4 3 2 3 2 4 1 3 3 4 3 1 3 3 1 4 3 3 2 1 1 4 3 1 3 4 4
[2258] 4 1 4 1 4 2 3 3 3 3 3 3 3 4 3 4 2 4 3 1 2 1 3 2 2 1 1 1 1 3 3 1 2 4 3 1 2
[2295] 4 3 3 1 4 4 4 4 1 4 3 3 4 3 4 4 3 4 4 2 4 3 4 3 3 2 4 3 4 3 1 4 4 4 4 3 1
[2332] 3 1 4 1 4 1 3 3 2 3 3 2 3 2 1 3 2 4 3 1 1 4 2 2 4 4 2 1 4 4 2 3 3 1 4 1 1
[2369] 3 3 4 1 2 2 1 3 1 2 1 1 1 3 4 2 4 3 3 3 2 2 4 3 4 4 1 1 1 2 2 2 2 4 1 4 4
[2406] 1 2 4 1 4 1 1 1 4 1 4 1 1 2 1 4 1 1 4 1 4 3 1 3 1 1 3 1 1 1 4 3 3 3 4 3 3
[2443] 1 1 1 1 1 4 4 1 3 3 4 4 1 1 3 3 1 3 3 2 2 3 4 3 3 4 2 4 3 3 2 4 2 4 3 2 1
[2480] 4 4 1 1 1 1 1 4 4 4 3 4 1 3 4 4 3 2 4 4 3 4 1 4 4 3 1 1 4 3 4 1 1 2 4 3 2
[2517] 3 1 2 1 3 4 3 3 3 3 4 4 4 3 3 3 3 3 2 3 4 4 4 4 3 3 3 4 4 3 3 4 1 1 4 1 4
[2554] 3 3 3 3 3 3 4 2 4 2 4 3 1 2 4 1 4 4 2 2 3 3 1 1 1 4 4 3 3 3 3 3 3 3 2 3 3
[2591] 4 3 3 3 4 3 1 4 1 1 4 1 4 4 4 2 3 1 1 2 3 1 4 4 2 4 4 4 4 3 3 4 4 4 2 3 4
[2628] 4 1 1 4 4 1 3 1 2 3 1 4 2 2 3 2 3 3 4 2 4 3 3 3 3 2 3 1 1 1 4 3 2 3 3 4 2
[2665] 2 4 3 4 4 3 3 3 4 2 4 4 2 3 4 4 4 3 4 4 4 2 4 1 3 4 4 4 3 4 4 4 3 2 3 4 2
[2702] 4 4 4 1 1 1 4 1 1 1 3 3 1 1 3 1 3 2 3 2 3 4 4 3 3 2 4 1 2 1 3 4 2 3 1 4 2
[2739] 4 2 3 4 3 2 2 2 3 4 3 4 3 4 4 2 2 1 1 2 2 4 3 3 3 4 3 4 2 3 4 3 1 4 4 2 4
[2776] 4 4 4 2 4 4 3 1 1 1 3 2 3 3 3 1 1 1 4 3 2 4 3 4 4 1 1 2 2 2 4 3 3 1 3 2 4
[2813] 4 3 2 2 4 2 3 4 4 1 3 2 3 3 1 3 3 3 3 3 2 4 4 3 1 3 2 2 2 2 2 2 2 2 2 2 3
[2850] 1 3 2 3 4 2 3 4 2 3 4 3 2 2 2 4 4 4 4 4 4 4 2 3 2 4 2 3 3 4 2 2 2 4 2 4 2
[2887] 2 2 2 4 3 3 1 3 2 3 1 1 2 3 2 2 3 2 4 3 1 2 2 2 3 3 2 1 2 2 4 4 2 4 2 1 4
[2924] 4 4 1 2 3 3 4 3 2 1 4 2 2 2 1 4 4 4 4 3 4 4 3 4 4 1 4 4 2 4 4 2 4 2 2 2 2
[2961] 4 4 2 4 4 4 4 4 3 2 3 4 4 4 4 3 4 4 4 4 4 2 1 3 2 4 4 4 2 1 3 3 4 4 4 4 4
[2998] 3 4 4 4 4 3 2 4 3 1 3 3 1 1 4 2 4 2 2 4 3 4 2 2 2 4 2 4 3 4 3 4 4 4 4 2 1
[3035] 3 2 1 3 4 1 4 3 3 4 4 2 4 3 4 1 1 1 3 4 2 4 2 4 1 2 3 3 4 3 1 4 1 4 4 2 4
[3072] 2 3 4 4 2 4 1 2 4 2 3 2 2 2 2 2 1 2 2 2 1 3 4 2 2 2 4 4 4 4 2 4 4 4 3 3 3
[3109] 3 1 4 2 4 4 4 4 2 2 3 2 1 4 4 2 4 3 4 2 2 4 3 1 4 4 4 1 4 4 4 4 1 2 4 4 4
[3146] 4 4 3 4 3 2 4 1 2 4 4 4 4 4 4 2 4 4 4 1 4 4 4 2 4 3 2 4 4 4 3 2 3 2 4 2 4
[3183] 4 2 2 4 2 4 4 3 4 3 4 4 2 4 4 4 4 4 3 4 2 4 3 3 2 4 3 3 4 3 4 3 2 2 4 4 4
[3220] 2 2 2 4 3 3 2 4 1 1 4 3 4 2 2 4 3 3 3 4 2 4 4 4 2 2 4 4 3 3 3 4 3 4 4 1 1
[3257] 1 1 1 1 1 2 1 2 1 3 4 3 4 1 4 2 2 4 4 2 3 4 1 4 4 4 4 3 4 4 4 4 3 1 2 2 1
[3294] 2 4 1 1 1 4 4 2 2 2 2 3 2 3 1 4 2 4 3 2 2 1 2 2 4 4 3 4 2 4 2 4 4 3 2 4 4
[3331] 3 3 3 3 2 1 1 1 2 2 4 2 4 1 1 1 1 3 2 2 4 2 2 2 4 4 3 2 2 2 2 2 4 2 2 2 4
[3368] 4 3 4 4 4 3 4 3 4 3 1 3 1 4 4 4 3 3 4 3 1 2 2 4 4 2 4 1 1 4 1 1 2 4 4 4 4
[3405] 2 4 2 1 1 4 3 4 3 1 3 3 1 2 1 3 3 2 4 3 4 3 3 3 4 3 3 3 4 2 2 2 2 4 1 4 4
[3442] 4 2 4 1 4 3 2 4 4 4 4 4 2 4 2 3 3 4 3 4 1 4 4 3 4 4 1 2 3 1 4 4 2 1 3 2 3
[3479] 3 2 2 4 2 2 2 4 2 1 2 2 3 4 4 4 4 4 3 3 4 4 4 4 3 2 4 4 3 4 3 3 3 2 4 2 2
[3516] 2 3 4 4 4 1 3 3 1 4 4 4 3 2 4 3 3 2 3 3 3 2 4 4 2 2 4 3 3 3 1 3 1 4 3 4 4
[3553] 4 4 2 4 4 2 4 2 2 2 3 2 2 2 4 2 2 2 2 2 4 2 4 4 3 4 4 2 3 4 2 2 2 4 3 4 4
[3590] 4 4 3 3 3 4 4 4 3 3 1 2 4 4 4 2 3 3 2 3 3 3 2 4 3 3 2 1 4 4 4 3 4 2 4 2 1
[3627] 4 1 3 3 4 4 4 4 3 2 2 4 2 2 4 3 3 4 4 3 2 2 4 4 4 1 4 1 4 4 1 4 3 4 4 3 2
[3664] 3 3 4 3 4 2 4 3 2 2 2 4 3 2 3 4 4 1 4 4 1 4 1 3 2 1 4 3 4 4 4 4 3 4 1 2 3
[3701] 3 4 3 3 3 3 2 4 1 3 2 3 3 1 2 1 3 4 4 1 3 4 4 3 4 4 4 3 2 4 1 3 4 4 4 2 2
[3738] 4 4 3 3 3 3 3 3 3 4 1 4 3 3 4 3 3 4 4 4 3 3 4 4 2 2 2 4 1 1 1 4 1 4 4 4 4
[3775] 1 4 4 4 4 2 1 4 2 1 4 2 1 1 1 1 1 1 4 3 4 4 2 2 4 3 2 2 4 4 2 2 2 4 4 4 3
[3812] 3 4 3 3 4 4 4 4 4 4 3 1 1 4 2 4 2 4 2 4 4 4 4 3 4 4 4 3 4 2 1 4 4 2 3 4 3
[3849] 2 2 4 4 2 4 4 3 2 4 4 1 1 3 1 1 2 4 4 1 1 3 3 1 1 3 1 4 3 2 3 2 4 4 4 3 4
[3886] 2 3 2 4 4 2 4 4 2 4 2 3 3 4 4 2 2 2 2 4 2 2 2 4 4 3 4 2 4 4 4 3 1 4 4 4 3
[3923] 2 4 4 2 2 4 3 3 2 4 4 2 2 1 4 3 2 3 3 3 4 4 3 3 4 3 4 3 3 3 2 4 3 2 4 2 4
[3960] 4 3 3 4 4 3 2 4 1 1 4 3 4 2 1 1 3 4 4 1 1 3 3 3 4 4 4 4 1 4 4 1 4 2 4 4 4
[3997] 4 3 4 4 4 4 2 4 4 4 2 4 2 3 4 3 4 3 1 2 3 4 1 2 2 4 3 3 3 2 3 3 2 4 4 4 4
[4034] 4 4 3 3 3 4 4 1 3 4 4 4 4 3 4 4 2 4 2 3 4 3 2 4 4 4 2 2 2 4 4 2 4 3 3 3 4
[4071] 3 2 3 4 2 4 4 4 4 2 4 4 3 3 2 2 2 4 2 4 3 2 4 2 2 2 4 2 4 4 2 3 3 2 2 4 3
[4108] 3 4 3 1 2 2 2 4 2 3 3 4 3 4 3 3 2 2 3 3 1 1 2 4 1 1 4 2 4 4 1 2 3 3 3 4 4
[4145] 3 3 4 3 4 2 1 1 4 1 1 1 1 3 3 3 3 3 3 4 4 2 3 4 4 4 3 4 3 2 3 3 3 4 4 1 4
[4182] 2 3 2 2 1 2 4 4 4 2 4 2 2 2 2 2 3 3 2 2 2 4 3 4 2 3 4 2 2 4 1 3 2 1 1 1 4
[4219] 3 1 2 4 4 2 2 1 3 2 1 4 4 2 2 4 4 4 4 2 4 2 4 3 3 2 4 4 2 4 4 3 2 2 2 2 4
[4256] 4 4 4 4 4 3 4 3 3 4 3 4 4 3 1 3 1 4 4 4 4 4 3 2 4 4 4 4 2 2 2 2 4 2 4 4 1
[4293] 4 1 4 1 4 4 4 3 3 3 1 4 4 4 4 4 2 4 3 4 4 2 4 4 2 3 4 4 1 3 4 4 4 3 3 3 3
[4330] 3 3 3 3 3 3 3 3 3 3 2 3 4 3 4 4 4 4 3 3 1 2 4 3 3 3 4 3 1 3 1 3 4 4 4 4 3
[4367] 4 4 4 4 4 2 4 2 3 1 4 2 4 4 3 3 4 2 3 3 3 2 2 4 3 1 3 3 3 3 3 3 3 3 3 4 3
[4404] 1 1 1 4 2 1 4 3 2 4 2 4 4 3 4 4 4 4 4 4 4 4 4 4 1 3 3 3 2 2 1 3 3 2 3 4 4
[4441] 3 4 3 4 4 4 4 2 4 3 4 1 3 2 3 3 3 3 4 4 3 3 4 4 4 4 3 3 2 4 2 2 2 4 4 4 4
[4478] 3 3 4 4 3 3 4 4 2 2 2 4 4 4 2 2 3 2 1 2 3 4 2 3 3 3 4 4 3 4 2 3 2 3 4 4 2
[4515] 1 4 2 2 2 3 1 1 2 3 3 3 1 2 2 3 3 3 4 4 4 3 3 2 4 2 4 4 2 2 4 4 2 2 1 2 2
[4552] 4 4 4 4 2 4 1 4 4 4 2 4 4 4 3 3 3 4 4 2 2 2 2 4 4 2 2 2 4 4 4 3 3 4 3 4 4
[4589] 4 4 3 1 3 4 4 4 4 2 4 2 4 4 3 4 3 2 4 3 2 2 2 2 3 3 3 4 2 4 4 1 4 2 4 4 2
[4626] 3 1 2 2 2 4 4 1 1 4 4 3 4 3 1 4 4 2 1 4 3 2 4 1 2 2 4 1 2 3 3 3 3 4 2 2 3
[4663] 4 4 4 4 1 4 4 4 3 3 3 4 3 3 4 4 3 3 4 2 2 4 1 4 4 3 3 3 3 3 3 3 3 4 2 4 4
[4700] 3 3 3 3 2 1 4 4 4 4 3 4 4 4 2 4 2 2 4 4 2 2 2 4 3 2 4 2 4 4 2 4 3 3 4 2 2
[4737] 2 4 4 2 1 4 4 3 2 1 4 2 3 3 3 1 2 4 4 2 4 4 4 4 4 4 2 4 4 2 4 3 3 3 3 3 1
[4774] 2 4 4 4 4 4 2 4 3 4 4 3 2 4 4 3 4 4 4 4 3 3 3 3 2 4 4 4 3 4 4 2 2 4 4 2 3
[4811] 3 2 4 3 4 4 3 4 2 4 3 4 3 4 3 4 4 2 3 2 4 4 4 2 2 4 2 1 4 2 4 1 2 3 3 2 3
[4848] 4 3 3 3 3 4 2 2 3 3 4 3 4 4 2 2 2 3 2 4 2 4 2 4 2 3 4 4 2 4 2 2 3 3 4 3 3
[4885] 3 3 4 2 4 4 2 4 4 2 3 4 4 2
Within cluster sum of squares by cluster:
[1] 681403.3 357903.9 579703.3 462118.7
(between_SS / total_SS = 80.0 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
Visualisation technique to show the cluster group.
fviz_cluster(kmeans4, data = whitewine)
Take results from kmeans and pull out the cluster field and append back to the white wine data set.
whitewine <- whitewine %>% mutate(Cluster = kmeans4$cluster)Factorize the cluster column (1,2,3,4,5), as the values returned from cluster is as integer (continuous), should convert into discrete categories.
whitewine$Cluster <- as_factor(whitewine$Cluster)Plotting the parallel plot
- Rotate labels for axis to minimise overlap.
#whitewine %>%