In Class Exercise 9

Author

Seng Jing Yi

Published

June 15, 2024

Modified

June 15, 2024

pacman::p_load(scatterPlotMatrix, parallelPlot, cluster, factoextra, tidyverse)

Import Data

wine <- read_csv("data/wine_quality.csv")

Quick overview of the type of wine in data set.

ggplot(data = wine, aes(x= type)) + geom_bar() + labs(
  title = "Breakdown of Wine by Type", 
  x = "Type of Wine", 
  y = "Frequency of Wine"
)

Only interested in white wine, hence filter to white wine.

  1. Drop column 12: Quality of Wine to make the data more clean for clustering
  2. Drop column 13 on type as already filtered down to white wine, all will be “white:
whitewine <- wine %>% 
  filter(type == "white") %>%
  select(c(1:11))

Scatter Plot Matrix (Interactive)

Plotting the scatter plot matrix.

  • As the plot is a widget itself, the width and height of the display is defined within the variable (500 pixel width and 500 pixel height).

  • distribType = 1: Density Plot, 2 = Histogram

  • corrPlotCS = Setting color for the scheme. (e.g “YlOrRd”)

# returning density plot
scatterPlotMatrix(whitewine, corrPlotType = "Text", 
                  distribType = 1, 
                  width = 500, 
                  height = 500)
Distribution Representation:
Continuous Color Scale:
Categorical Color Scale:
Correlation Plot Type:
Correlation Color Scale:
Mouse mode:
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensity-0.02270.2890.0890.0231-0.04940.09110.265-0.1490.06430.0705-0.0970.08930.02710.09420.1140.09410.1210.150.08870.2990.4010.8390.1010.1990.2570.6160.2940.5346810121400.10.20.30.40.500.20.40.60.8101234500.511.501234020406000.010.020.030.040.050.0600.10.20.305101520253035010020030000.0050.010.0150.020.025010020030040000.0020.0040.0060.0080.010.9911.011.021.031.0402040608010012014046810121400.20.40.60.81
9
46810121400.511.5
17
00.20.40.60.8100.511.5
18
4681012140204060
25
00.20.40.60.810204060
26
00.511.50204060
27
46810121400.10.20.3
33
00.20.40.60.8100.10.20.3
34
00.511.500.10.20.3
35
020406000.10.20.3
36
4681012140100200300
41
00.20.40.60.810100200300
42
00.511.50100200300
43
02040600100200300
44
00.10.20.30100200300
45
4681012140100200300400
49
00.20.40.60.810100200300400
50
00.511.50100200300400
51
02040600100200300400
52
00.10.20.30100200300400
53
01002003000100200300400
54
4681012140.9911.011.021.031.04
57
00.20.40.60.810.9911.011.021.031.04
58
00.511.50.9911.011.021.031.04
59
02040600.9911.011.021.031.04
60
00.10.20.30.9911.011.021.031.04
61
01002003000.9911.011.021.031.04
62
01002003004000.9911.011.021.031.04
63
# returning histogram
scatterPlotMatrix(whitewine, corrPlotType = "Text", 
                  distribType = 2, 
                  width = 500, 
                  height = 500)
Distribution Representation:
Continuous Color Scale:
Categorical Color Scale:
Correlation Plot Type:
Correlation Color Scale:
Mouse mode:
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensity-0.02270.2890.0890.0231-0.04940.09110.265-0.1490.06430.0705-0.0970.08930.02710.09420.1140.09410.1210.150.08870.2990.4010.8390.1010.1990.2570.6160.2940.53468101214020040060080010001.2 E31.4 E300.20.40.60.81020040060080010001.2 E31.4 E300.511.5050010001.5 E32 E30204060050010001.5 E32 E300.10.20.3050010001.5 E32 E32.5 E30100200300050010001.5 E30100200300400020040060080010000.9911.011.021.031.04050010001.5 E346810121400.20.40.60.81
9
46810121400.511.5
17
00.20.40.60.8100.511.5
18
4681012140204060
25
00.20.40.60.810204060
26
00.511.50204060
27
46810121400.10.20.3
33
00.20.40.60.8100.10.20.3
34
00.511.500.10.20.3
35
020406000.10.20.3
36
4681012140100200300
41
00.20.40.60.810100200300
42
00.511.50100200300
43
02040600100200300
44
00.10.20.30100200300
45
4681012140100200300400
49
00.20.40.60.810100200300400
50
00.511.50100200300400
51
02040600100200300400
52
00.10.20.30100200300400
53
01002003000100200300400
54
4681012140.9911.011.021.031.04
57
00.20.40.60.810.9911.011.021.031.04
58
00.511.50.9911.011.021.031.04
59
02040600.9911.011.021.031.04
60
00.10.20.30.9911.011.021.031.04
61
01002003000.9911.011.021.031.04
62
01002003004000.9911.011.021.031.04
63

Exposing control for the widget with controlWidgets = TRUE

scatterPlotMatrix(whitewine, corrPlotType = "Text", 
                  distribType = 2, 
                  width = 500, 
                  height = 500, 
                  controlWidgets = TRUE)
Distribution Representation:
Continuous Color Scale:
Categorical Color Scale:
Correlation Plot Type:
Correlation Color Scale:
Mouse mode:
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensityfixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensity-0.02270.2890.0890.0231-0.04940.09110.265-0.1490.06430.0705-0.0970.08930.02710.09420.1140.09410.1210.150.08870.2990.4010.8390.1010.1990.2570.6160.2940.53468101214020040060080010001.2 E31.4 E300.20.40.60.81020040060080010001.2 E31.4 E300.511.5050010001.5 E32 E30204060050010001.5 E32 E300.10.20.3050010001.5 E32 E32.5 E30100200300050010001.5 E30100200300400020040060080010000.9911.011.021.031.04050010001.5 E346810121400.20.40.60.81
9
46810121400.511.5
17
00.20.40.60.8100.511.5
18
4681012140204060
25
00.20.40.60.810204060
26
00.511.50204060
27
46810121400.10.20.3
33
00.20.40.60.8100.10.20.3
34
00.511.500.10.20.3
35
020406000.10.20.3
36
4681012140100200300
41
00.20.40.60.810100200300
42
00.511.50100200300
43
02040600100200300
44
00.10.20.30100200300
45
4681012140100200300400
49
00.20.40.60.810100200300400
50
00.511.50100200300400
51
02040600100200300400
52
00.10.20.30100200300400
53
01002003000100200300400
54
4681012140.9911.011.021.031.04
57
00.20.40.60.810.9911.011.021.031.04
58
00.511.50.9911.011.021.031.04
59
02040600.9911.011.021.031.04
60
00.10.20.30.9911.011.021.031.04
61
01002003000.9911.011.021.031.04
62
01002003004000.9911.011.021.031.04
63

Clustering

Determining optimal number of clusters

#set.seed(1234)
#gap_stat <- clusGap

#fviz_gap_stat(gap_stat)

Deriving the 4 clusters

  • set.seed defined to ensure that it starts from the same position to return similar clusters per iteration
set.seed(123)
kmeans4 <- kmeans(whitewine, 4, nstart = 25)
print(kmeans4)
K-means clustering with 4 clusters of sizes 757, 978, 1444, 1719

Cluster means:
  fixed acidity volatile acidity citric acid residual sugar  chlorides
1      6.981506        0.2965786   0.3563540       9.705878 0.05227081
2      6.805112        0.2759356   0.3168814       3.607822 0.04012781
3      6.908172        0.2776939   0.3455402       7.780852 0.04919668
4      6.782403        0.2719372   0.3247469       5.348342 0.04324549
  free sulfur dioxide total sulfur dioxide   density       pH sulphates
1            52.83421             206.8164 0.9965522 3.176975 0.5179392
2            20.52761              83.1411 0.9919192 3.175256 0.4707566
3            42.31129             160.3061 0.9951215 3.193996 0.4940651
4            30.11635             121.1963 0.9931958 3.195829 0.4847935
    alcohol
1  9.611471
2 11.233930
3 10.120392
4 10.833256

Clustering vector:
   [1] 3 4 2 1 1 2 4 3 4 4 2 4 2 3 3 4 2 2 3 4 2 2 4 3 4 1 3 4 4 4 4 2 2 4 3 4 3
  [38] 4 3 3 3 3 3 3 3 3 1 1 3 3 3 4 2 4 4 1 1 3 2 4 4 3 3 2 4 4 4 3 2 4 1 1 1 2
  [75] 2 4 2 2 4 4 4 3 3 1 3 3 3 1 3 3 3 1 4 4 3 1 3 2 2 3 1 3 3 3 1 4 3 3 3 1 3
 [112] 1 1 3 3 2 4 2 1 1 2 4 4 4 3 3 4 1 3 3 2 1 1 1 1 3 4 3 2 2 2 3 4 2 2 4 3 2
 [149] 2 4 3 3 4 2 2 1 1 4 4 4 4 3 2 1 1 3 1 2 3 4 4 2 2 4 3 3 2 3 4 3 3 1 3 1 1
 [186] 1 3 4 4 1 1 3 4 4 1 1 1 1 1 1 1 1 1 4 4 3 4 4 2 3 2 4 4 4 4 3 3 3 3 3 3 3
 [223] 4 3 4 3 1 1 1 3 4 1 1 1 1 1 1 1 4 3 1 2 2 1 3 1 4 2 2 4 1 1 3 4 3 3 2 2 4
 [260] 2 4 3 2 1 3 3 3 3 3 3 3 3 3 4 1 3 3 2 2 4 4 4 1 1 1 3 1 1 1 1 1 3 1 3 3 3
 [297] 3 1 3 4 2 2 2 3 3 3 3 3 4 3 2 3 3 3 3 4 4 4 4 2 2 4 4 4 1 1 1 3 1 2 4 4 2
 [334] 4 2 2 4 3 4 3 3 4 4 3 3 4 2 3 4 3 3 4 4 4 1 1 1 3 3 3 3 2 4 1 2 4 3 3 3 2
 [371] 3 3 1 3 2 2 4 2 3 4 2 3 3 3 4 2 4 1 4 1 1 2 4 2 3 3 2 4 3 2 4 3 4 1 3 3 4
 [408] 4 4 2 3 3 2 2 3 3 2 1 2 4 4 1 1 1 3 1 1 1 2 1 1 2 1 3 4 2 1 1 1 4 2 4 4 1
 [445] 3 2 3 4 4 4 3 4 3 4 4 4 2 4 1 1 4 3 3 2 3 4 3 2 3 1 3 1 2 4 4 1 4 4 3 3 3
 [482] 4 4 3 1 4 4 2 3 3 2 2 3 3 4 3 1 3 3 1 1 3 1 1 3 3 4 3 3 3 3 3 4 2 4 3 3 3
 [519] 2 2 4 4 2 2 2 4 2 4 4 4 4 3 3 3 3 3 3 3 2 1 3 1 3 3 3 3 3 2 4 1 3 2 4 3 4
 [556] 2 3 4 3 3 3 4 3 4 3 2 2 3 3 3 1 4 3 3 4 1 1 3 4 4 1 4 3 2 4 2 3 4 4 4 4 4
 [593] 3 4 4 4 3 4 4 2 3 4 4 4 4 4 3 3 3 2 4 2 4 4 4 4 2 1 1 4 1 3 4 2 4 4 3 1 1
 [630] 2 3 3 4 1 3 4 4 3 1 1 4 1 1 3 3 3 3 3 1 1 1 1 1 4 3 4 2 4 1 1 2 4 3 2 3 4
 [667] 1 3 3 1 1 2 3 4 1 1 1 2 2 2 3 3 3 3 3 1 4 1 1 4 4 1 1 3 1 1 2 1 1 1 1 4 2
 [704] 4 4 2 1 3 4 2 3 4 4 1 1 3 1 3 3 4 3 3 4 2 4 4 4 2 3 3 4 1 2 3 1 4 3 1 3 4
 [741] 2 2 4 3 3 4 1 3 3 3 3 3 3 1 4 4 3 3 3 4 3 3 1 4 3 4 1 2 4 4 4 3 3 3 4 4 2
 [778] 1 3 3 2 1 3 3 1 4 4 4 4 4 4 2 3 2 3 3 1 3 4 2 3 1 1 3 4 3 1 1 1 1 1 4 3 3
 [815] 1 4 2 4 4 4 2 1 4 4 2 3 3 4 2 2 4 3 4 2 4 4 3 3 3 4 4 3 3 4 4 4 3 2 3 4 4
 [852] 3 4 3 4 4 3 3 3 3 4 1 3 4 3 4 4 3 3 2 3 3 4 2 2 4 4 4 4 4 4 4 4 4 1 4 3 2
 [889] 3 2 3 4 4 4 4 2 1 2 2 1 3 4 1 1 3 2 2 4 3 1 4 4 4 2 2 2 4 4 4 4 3 3 3 1 3
 [926] 2 2 3 3 4 2 1 1 1 1 1 2 4 1 1 1 1 2 4 4 4 1 3 2 2 4 4 2 4 4 4 4 2 2 3 3 4
 [963] 3 4 3 2 1 3 2 2 2 4 3 2 4 4 4 1 3 2 2 3 2 2 3 4 3 3 3 4 3 2 1 2 3 3 2 3 3
[1000] 3 2 1 1 4 3 2 3 2 1 3 4 3 2 1 3 4 4 4 3 1 4 4 1 3 3 4 3 2 4 1 3 1 1 1 1 3
[1037] 2 2 4 2 4 2 4 1 2 2 4 2 2 4 3 4 2 4 2 4 4 1 4 3 4 1 1 1 3 4 3 4 2 3 3 4 4
[1074] 1 3 4 3 4 1 1 4 3 3 1 4 3 4 4 1 4 1 3 3 4 1 2 3 4 4 4 3 4 3 4 3 1 4 2 2 3
[1111] 2 2 3 2 2 2 2 1 2 4 4 4 2 4 4 3 3 2 2 4 3 4 3 4 4 3 3 3 4 2 2 3 4 4 4 1 3
[1148] 3 4 1 1 1 2 2 3 3 4 4 1 4 3 4 3 1 2 4 2 4 2 3 4 4 4 4 1 3 1 3 3 4 4 4 4 4
[1185] 4 1 3 4 3 2 4 4 4 4 1 3 4 4 4 2 2 2 1 2 2 1 3 1 4 4 2 3 3 2 2 3 2 1 4 2 1
[1222] 4 4 3 4 2 4 4 4 2 1 4 2 4 3 1 2 4 4 3 3 3 3 4 4 1 3 2 2 1 3 3 3 3 3 4 3 1
[1259] 1 1 1 3 3 1 2 3 4 3 4 1 3 4 3 4 1 4 3 4 4 3 4 3 3 3 3 4 3 4 4 2 2 1 2 2 2
[1296] 1 4 4 3 3 3 3 1 3 1 4 4 4 4 2 3 4 3 3 3 3 1 3 2 1 4 4 3 3 3 4 3 3 2 4 4 4
[1333] 1 3 4 1 3 1 1 4 4 3 4 3 3 4 3 3 3 2 4 4 1 1 3 3 1 3 4 4 3 1 4 2 3 4 2 4 1
[1370] 1 4 3 3 3 4 4 4 4 4 4 3 2 2 2 4 4 4 2 4 1 4 2 2 2 4 2 4 1 1 2 1 1 4 4 2 4
[1407] 2 2 1 4 2 2 3 4 4 2 4 1 4 4 4 2 4 1 4 4 4 3 2 2 4 2 2 2 3 2 1 2 1 1 3 4 4
[1444] 4 3 4 2 3 3 3 3 4 3 3 1 3 2 4 3 4 4 3 3 4 3 3 3 2 2 4 3 3 2 4 2 3 3 2 3 4
[1481] 3 4 1 2 4 4 2 3 1 1 4 2 1 3 1 1 2 4 2 3 4 3 4 4 4 4 1 3 3 4 4 4 4 3 4 4 3
[1518] 3 2 3 3 4 3 3 3 3 3 1 3 3 3 3 1 4 3 4 2 3 4 4 3 2 4 2 2 3 3 3 4 4 3 4 3 3
[1555] 3 3 3 3 4 2 3 4 4 3 4 4 3 4 1 3 3 1 3 4 4 1 2 4 3 1 4 2 4 3 1 3 3 1 3 4 3
[1592] 3 4 2 4 1 4 1 4 2 4 1 2 2 4 4 4 4 1 1 4 2 2 4 4 3 1 4 1 4 2 4 3 4 4 3 1 4
[1629] 4 2 4 4 4 4 1 4 3 3 1 4 3 3 4 3 4 3 3 2 2 3 4 1 4 3 3 4 2 3 1 1 1 1 4 3 3
[1666] 4 2 4 2 4 3 2 3 3 1 1 2 3 3 4 1 1 1 1 1 1 3 1 1 4 3 1 1 1 3 4 1 1 1 3 4 1
[1703] 4 3 3 4 3 3 3 3 2 4 3 4 4 3 4 4 3 2 3 1 3 3 4 3 2 1 4 4 4 1 4 4 1 3 2 1 2
[1740] 2 3 3 3 3 4 1 2 3 2 4 3 3 1 3 2 3 1 1 2 1 1 4 2 4 1 1 1 3 3 4 3 3 3 3 2 4
[1777] 3 3 3 3 3 1 3 2 4 3 4 3 4 1 3 4 3 1 4 3 4 4 3 3 1 2 3 3 1 4 4 1 4 1 3 4 2
[1814] 4 2 3 4 4 2 4 3 4 2 1 3 2 3 1 1 3 3 3 3 3 3 1 4 4 1 4 3 4 1 4 2 3 3 3 1 1
[1851] 3 2 4 4 3 1 3 3 3 1 3 1 4 1 4 4 1 4 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 1 4 2 4
[1888] 3 1 4 1 1 3 3 3 1 3 3 2 4 3 4 3 4 1 3 4 3 2 4 3 2 4 3 4 2 3 2 3 1 3 4 4 2
[1925] 2 2 2 3 1 3 1 1 2 3 2 3 1 3 2 3 1 3 1 1 1 3 3 1 4 3 1 3 4 3 1 3 2 2 1 2 2
[1962] 4 2 1 3 3 4 1 3 3 4 3 4 4 4 1 1 3 4 1 1 1 1 1 1 3 3 3 1 4 4 1 2 3 3 3 3 3
[1999] 3 1 3 3 3 3 3 3 3 2 3 2 2 3 3 4 2 2 4 2 4 4 3 3 1 3 1 3 2 3 3 1 4 3 2 1 4
[2036] 2 3 3 4 2 1 4 4 4 4 2 4 3 3 3 4 3 3 2 2 3 3 3 1 3 1 2 4 4 3 4 4 3 4 4 3 4
[2073] 3 1 3 4 4 1 4 4 4 2 4 4 3 3 2 3 4 3 3 3 2 4 4 3 4 3 3 3 3 2 1 4 3 4 1 3 3
[2110] 1 3 3 3 2 1 3 2 4 4 4 3 4 3 3 4 3 3 1 3 4 4 3 3 3 4 1 4 1 2 2 4 4 3 2 3 3
[2147] 4 4 2 2 4 4 2 2 1 3 2 2 4 2 4 2 4 2 4 3 3 1 1 1 1 1 4 3 1 1 4 4 3 4 3 4 3
[2184] 3 4 2 2 4 2 4 4 3 3 4 2 4 2 2 1 1 3 3 1 3 3 3 4 4 4 4 3 4 4 4 4 3 2 4 3 4
[2221] 4 3 3 3 3 3 3 3 4 3 4 3 2 3 2 4 1 3 3 4 3 1 3 3 1 4 3 3 2 1 1 4 3 1 3 4 4
[2258] 4 1 4 1 4 2 3 3 3 3 3 3 3 4 3 4 2 4 3 1 2 1 3 2 2 1 1 1 1 3 3 1 2 4 3 1 2
[2295] 4 3 3 1 4 4 4 4 1 4 3 3 4 3 4 4 3 4 4 2 4 3 4 3 3 2 4 3 4 3 1 4 4 4 4 3 1
[2332] 3 1 4 1 4 1 3 3 2 3 3 2 3 2 1 3 2 4 3 1 1 4 2 2 4 4 2 1 4 4 2 3 3 1 4 1 1
[2369] 3 3 4 1 2 2 1 3 1 2 1 1 1 3 4 2 4 3 3 3 2 2 4 3 4 4 1 1 1 2 2 2 2 4 1 4 4
[2406] 1 2 4 1 4 1 1 1 4 1 4 1 1 2 1 4 1 1 4 1 4 3 1 3 1 1 3 1 1 1 4 3 3 3 4 3 3
[2443] 1 1 1 1 1 4 4 1 3 3 4 4 1 1 3 3 1 3 3 2 2 3 4 3 3 4 2 4 3 3 2 4 2 4 3 2 1
[2480] 4 4 1 1 1 1 1 4 4 4 3 4 1 3 4 4 3 2 4 4 3 4 1 4 4 3 1 1 4 3 4 1 1 2 4 3 2
[2517] 3 1 2 1 3 4 3 3 3 3 4 4 4 3 3 3 3 3 2 3 4 4 4 4 3 3 3 4 4 3 3 4 1 1 4 1 4
[2554] 3 3 3 3 3 3 4 2 4 2 4 3 1 2 4 1 4 4 2 2 3 3 1 1 1 4 4 3 3 3 3 3 3 3 2 3 3
[2591] 4 3 3 3 4 3 1 4 1 1 4 1 4 4 4 2 3 1 1 2 3 1 4 4 2 4 4 4 4 3 3 4 4 4 2 3 4
[2628] 4 1 1 4 4 1 3 1 2 3 1 4 2 2 3 2 3 3 4 2 4 3 3 3 3 2 3 1 1 1 4 3 2 3 3 4 2
[2665] 2 4 3 4 4 3 3 3 4 2 4 4 2 3 4 4 4 3 4 4 4 2 4 1 3 4 4 4 3 4 4 4 3 2 3 4 2
[2702] 4 4 4 1 1 1 4 1 1 1 3 3 1 1 3 1 3 2 3 2 3 4 4 3 3 2 4 1 2 1 3 4 2 3 1 4 2
[2739] 4 2 3 4 3 2 2 2 3 4 3 4 3 4 4 2 2 1 1 2 2 4 3 3 3 4 3 4 2 3 4 3 1 4 4 2 4
[2776] 4 4 4 2 4 4 3 1 1 1 3 2 3 3 3 1 1 1 4 3 2 4 3 4 4 1 1 2 2 2 4 3 3 1 3 2 4
[2813] 4 3 2 2 4 2 3 4 4 1 3 2 3 3 1 3 3 3 3 3 2 4 4 3 1 3 2 2 2 2 2 2 2 2 2 2 3
[2850] 1 3 2 3 4 2 3 4 2 3 4 3 2 2 2 4 4 4 4 4 4 4 2 3 2 4 2 3 3 4 2 2 2 4 2 4 2
[2887] 2 2 2 4 3 3 1 3 2 3 1 1 2 3 2 2 3 2 4 3 1 2 2 2 3 3 2 1 2 2 4 4 2 4 2 1 4
[2924] 4 4 1 2 3 3 4 3 2 1 4 2 2 2 1 4 4 4 4 3 4 4 3 4 4 1 4 4 2 4 4 2 4 2 2 2 2
[2961] 4 4 2 4 4 4 4 4 3 2 3 4 4 4 4 3 4 4 4 4 4 2 1 3 2 4 4 4 2 1 3 3 4 4 4 4 4
[2998] 3 4 4 4 4 3 2 4 3 1 3 3 1 1 4 2 4 2 2 4 3 4 2 2 2 4 2 4 3 4 3 4 4 4 4 2 1
[3035] 3 2 1 3 4 1 4 3 3 4 4 2 4 3 4 1 1 1 3 4 2 4 2 4 1 2 3 3 4 3 1 4 1 4 4 2 4
[3072] 2 3 4 4 2 4 1 2 4 2 3 2 2 2 2 2 1 2 2 2 1 3 4 2 2 2 4 4 4 4 2 4 4 4 3 3 3
[3109] 3 1 4 2 4 4 4 4 2 2 3 2 1 4 4 2 4 3 4 2 2 4 3 1 4 4 4 1 4 4 4 4 1 2 4 4 4
[3146] 4 4 3 4 3 2 4 1 2 4 4 4 4 4 4 2 4 4 4 1 4 4 4 2 4 3 2 4 4 4 3 2 3 2 4 2 4
[3183] 4 2 2 4 2 4 4 3 4 3 4 4 2 4 4 4 4 4 3 4 2 4 3 3 2 4 3 3 4 3 4 3 2 2 4 4 4
[3220] 2 2 2 4 3 3 2 4 1 1 4 3 4 2 2 4 3 3 3 4 2 4 4 4 2 2 4 4 3 3 3 4 3 4 4 1 1
[3257] 1 1 1 1 1 2 1 2 1 3 4 3 4 1 4 2 2 4 4 2 3 4 1 4 4 4 4 3 4 4 4 4 3 1 2 2 1
[3294] 2 4 1 1 1 4 4 2 2 2 2 3 2 3 1 4 2 4 3 2 2 1 2 2 4 4 3 4 2 4 2 4 4 3 2 4 4
[3331] 3 3 3 3 2 1 1 1 2 2 4 2 4 1 1 1 1 3 2 2 4 2 2 2 4 4 3 2 2 2 2 2 4 2 2 2 4
[3368] 4 3 4 4 4 3 4 3 4 3 1 3 1 4 4 4 3 3 4 3 1 2 2 4 4 2 4 1 1 4 1 1 2 4 4 4 4
[3405] 2 4 2 1 1 4 3 4 3 1 3 3 1 2 1 3 3 2 4 3 4 3 3 3 4 3 3 3 4 2 2 2 2 4 1 4 4
[3442] 4 2 4 1 4 3 2 4 4 4 4 4 2 4 2 3 3 4 3 4 1 4 4 3 4 4 1 2 3 1 4 4 2 1 3 2 3
[3479] 3 2 2 4 2 2 2 4 2 1 2 2 3 4 4 4 4 4 3 3 4 4 4 4 3 2 4 4 3 4 3 3 3 2 4 2 2
[3516] 2 3 4 4 4 1 3 3 1 4 4 4 3 2 4 3 3 2 3 3 3 2 4 4 2 2 4 3 3 3 1 3 1 4 3 4 4
[3553] 4 4 2 4 4 2 4 2 2 2 3 2 2 2 4 2 2 2 2 2 4 2 4 4 3 4 4 2 3 4 2 2 2 4 3 4 4
[3590] 4 4 3 3 3 4 4 4 3 3 1 2 4 4 4 2 3 3 2 3 3 3 2 4 3 3 2 1 4 4 4 3 4 2 4 2 1
[3627] 4 1 3 3 4 4 4 4 3 2 2 4 2 2 4 3 3 4 4 3 2 2 4 4 4 1 4 1 4 4 1 4 3 4 4 3 2
[3664] 3 3 4 3 4 2 4 3 2 2 2 4 3 2 3 4 4 1 4 4 1 4 1 3 2 1 4 3 4 4 4 4 3 4 1 2 3
[3701] 3 4 3 3 3 3 2 4 1 3 2 3 3 1 2 1 3 4 4 1 3 4 4 3 4 4 4 3 2 4 1 3 4 4 4 2 2
[3738] 4 4 3 3 3 3 3 3 3 4 1 4 3 3 4 3 3 4 4 4 3 3 4 4 2 2 2 4 1 1 1 4 1 4 4 4 4
[3775] 1 4 4 4 4 2 1 4 2 1 4 2 1 1 1 1 1 1 4 3 4 4 2 2 4 3 2 2 4 4 2 2 2 4 4 4 3
[3812] 3 4 3 3 4 4 4 4 4 4 3 1 1 4 2 4 2 4 2 4 4 4 4 3 4 4 4 3 4 2 1 4 4 2 3 4 3
[3849] 2 2 4 4 2 4 4 3 2 4 4 1 1 3 1 1 2 4 4 1 1 3 3 1 1 3 1 4 3 2 3 2 4 4 4 3 4
[3886] 2 3 2 4 4 2 4 4 2 4 2 3 3 4 4 2 2 2 2 4 2 2 2 4 4 3 4 2 4 4 4 3 1 4 4 4 3
[3923] 2 4 4 2 2 4 3 3 2 4 4 2 2 1 4 3 2 3 3 3 4 4 3 3 4 3 4 3 3 3 2 4 3 2 4 2 4
[3960] 4 3 3 4 4 3 2 4 1 1 4 3 4 2 1 1 3 4 4 1 1 3 3 3 4 4 4 4 1 4 4 1 4 2 4 4 4
[3997] 4 3 4 4 4 4 2 4 4 4 2 4 2 3 4 3 4 3 1 2 3 4 1 2 2 4 3 3 3 2 3 3 2 4 4 4 4
[4034] 4 4 3 3 3 4 4 1 3 4 4 4 4 3 4 4 2 4 2 3 4 3 2 4 4 4 2 2 2 4 4 2 4 3 3 3 4
[4071] 3 2 3 4 2 4 4 4 4 2 4 4 3 3 2 2 2 4 2 4 3 2 4 2 2 2 4 2 4 4 2 3 3 2 2 4 3
[4108] 3 4 3 1 2 2 2 4 2 3 3 4 3 4 3 3 2 2 3 3 1 1 2 4 1 1 4 2 4 4 1 2 3 3 3 4 4
[4145] 3 3 4 3 4 2 1 1 4 1 1 1 1 3 3 3 3 3 3 4 4 2 3 4 4 4 3 4 3 2 3 3 3 4 4 1 4
[4182] 2 3 2 2 1 2 4 4 4 2 4 2 2 2 2 2 3 3 2 2 2 4 3 4 2 3 4 2 2 4 1 3 2 1 1 1 4
[4219] 3 1 2 4 4 2 2 1 3 2 1 4 4 2 2 4 4 4 4 2 4 2 4 3 3 2 4 4 2 4 4 3 2 2 2 2 4
[4256] 4 4 4 4 4 3 4 3 3 4 3 4 4 3 1 3 1 4 4 4 4 4 3 2 4 4 4 4 2 2 2 2 4 2 4 4 1
[4293] 4 1 4 1 4 4 4 3 3 3 1 4 4 4 4 4 2 4 3 4 4 2 4 4 2 3 4 4 1 3 4 4 4 3 3 3 3
[4330] 3 3 3 3 3 3 3 3 3 3 2 3 4 3 4 4 4 4 3 3 1 2 4 3 3 3 4 3 1 3 1 3 4 4 4 4 3
[4367] 4 4 4 4 4 2 4 2 3 1 4 2 4 4 3 3 4 2 3 3 3 2 2 4 3 1 3 3 3 3 3 3 3 3 3 4 3
[4404] 1 1 1 4 2 1 4 3 2 4 2 4 4 3 4 4 4 4 4 4 4 4 4 4 1 3 3 3 2 2 1 3 3 2 3 4 4
[4441] 3 4 3 4 4 4 4 2 4 3 4 1 3 2 3 3 3 3 4 4 3 3 4 4 4 4 3 3 2 4 2 2 2 4 4 4 4
[4478] 3 3 4 4 3 3 4 4 2 2 2 4 4 4 2 2 3 2 1 2 3 4 2 3 3 3 4 4 3 4 2 3 2 3 4 4 2
[4515] 1 4 2 2 2 3 1 1 2 3 3 3 1 2 2 3 3 3 4 4 4 3 3 2 4 2 4 4 2 2 4 4 2 2 1 2 2
[4552] 4 4 4 4 2 4 1 4 4 4 2 4 4 4 3 3 3 4 4 2 2 2 2 4 4 2 2 2 4 4 4 3 3 4 3 4 4
[4589] 4 4 3 1 3 4 4 4 4 2 4 2 4 4 3 4 3 2 4 3 2 2 2 2 3 3 3 4 2 4 4 1 4 2 4 4 2
[4626] 3 1 2 2 2 4 4 1 1 4 4 3 4 3 1 4 4 2 1 4 3 2 4 1 2 2 4 1 2 3 3 3 3 4 2 2 3
[4663] 4 4 4 4 1 4 4 4 3 3 3 4 3 3 4 4 3 3 4 2 2 4 1 4 4 3 3 3 3 3 3 3 3 4 2 4 4
[4700] 3 3 3 3 2 1 4 4 4 4 3 4 4 4 2 4 2 2 4 4 2 2 2 4 3 2 4 2 4 4 2 4 3 3 4 2 2
[4737] 2 4 4 2 1 4 4 3 2 1 4 2 3 3 3 1 2 4 4 2 4 4 4 4 4 4 2 4 4 2 4 3 3 3 3 3 1
[4774] 2 4 4 4 4 4 2 4 3 4 4 3 2 4 4 3 4 4 4 4 3 3 3 3 2 4 4 4 3 4 4 2 2 4 4 2 3
[4811] 3 2 4 3 4 4 3 4 2 4 3 4 3 4 3 4 4 2 3 2 4 4 4 2 2 4 2 1 4 2 4 1 2 3 3 2 3
[4848] 4 3 3 3 3 4 2 2 3 3 4 3 4 4 2 2 2 3 2 4 2 4 2 4 2 3 4 4 2 4 2 2 3 3 4 3 3
[4885] 3 3 4 2 4 4 2 4 4 2 3 4 4 2

Within cluster sum of squares by cluster:
[1] 681403.3 357903.9 579703.3 462118.7
 (between_SS / total_SS =  80.0 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
[6] "betweenss"    "size"         "iter"         "ifault"      

Visualisation technique to show the cluster group.

fviz_cluster(kmeans4, data = whitewine)

Take results from kmeans and pull out the cluster field and append back to the white wine data set.

whitewine <- whitewine %>% mutate(Cluster = kmeans4$cluster)

Factorize the cluster column (1,2,3,4,5), as the values returned from cluster is as integer (continuous), should convert into discrete categories.

whitewine$Cluster <- as_factor(whitewine$Cluster)

Plotting the parallel plot

  1. Rotate labels for axis to minimise overlap.
#whitewine %>%